


Hw 9 (cf Q15-18 in P93,94 and Q12,14 in P111 and Lemma 8 in P105, 3rd |






Let f: R: —>[0,   ) be measurable. By the 2nd principle of Littlewood (one of its versions, see Q4 of Hw 7) there exists a 1.
monotonically increasing sequence         of non-negative simple functions vanishing outside (-n,n) convergent a.e. 


              Show that, if f is also integrable then   





    

















































2. A subset Z  of a linear space Y with a semi-norm (



     Is said to be dense if for each  y in Y and each positive r there exists z in Z such that       

     Show that each of the following subclasses is dense in L(R) with respect to the semi-norm











(Hint: since each of the subclasses is stable with respect to lattice-operations, you need only show that each non-negative f 
from                       can be approximated by non-negative elements from the subclasses).









3.  Try some from a subclass and make use of Q1,2	  above or Littlewood’s principles show the following results )Let f be an 
integrable function on R.)



(I) 
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4. Let f be a function of two variables (x, t) which is defined on the product  Q = [a,b] x[c,d] of intervals such that for each t, the 
function is measurable on [a,b]. Show that:





















	 







































5. Let F   BV[0,1]                 and be ABC in the interval [a,1] for each a with 0<a   1. Show that f is ABC on [0,1].

(Hint: Use the continuity of the indefinite integral defined by F’, and also use the fundamental theorem of calculus applied to              

And finally pass to the limit as       (F is continuous at 0).

5. Show that ABC[a,b] is stable w.r.t linear operations and multiplication (also quotient f/g is g is bounded away from zero by a 
positive constant). Show the validity of “integration by parts”:

















6 (Two runners‘ Lemma).  Let f, g      Be integrable on [a,b] such that                                        .. for each x in [a,b]. Show that 

  f = g a.e. (If two runners  always side-by-side (same distances from the starting a) then their speeds are the same a.e.) 

(Hint. Let h=f-g. Then the integrals of h over any open interval, any open set, any closed sets contained in [a,b] are zero. Let 
P:= { x:  h(x) > 0} and let B be a closed set contained in P. Then h is strictly positive on B and the integral of h over B is zero so 
B must be of measure zero. By Littlewood P is also of measure zero.)
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